Offshore structures are used worldwide for a variety of functions and in a variety of water depths, and environments. Since right selection of equipment, types of platforms and method of drilling and also right planning, design, fabrication, transportation, installation and commissioning of petroleum platforms, considering the water depth and environment conditions are very important, this post will present a general overview of these aspects. This post reviews the fundamentals behind all types of offshore structures (fixed or floating) and, in the case of fixed platforms, will cover applications of these principles. The overall objective is to provide a general understanding of different stages of design, construction, loadout, transportation and installation of offshore platforms.
Offshore platforms have many uses including oil exploration and production, navigation, ship loading and unloading, and to support bridges and causeways.
Offshore oil production is one of the most visible of these applications and represents a significant challenge to the design engineer. These offshore structures must function safely for design lifetimes of twenty-five years or more and are subject to very harsh marine environments. Some important design considerations are peak loads created by hurricane wind and waves, fatigue loads generated by waves over the platform lifetime and the motion of the platform. The platforms are sometimes subjected to strong currents which create loads on the mooring system
and can induce vortex shedding.
see our Offshore Books section
Offshore platforms are huge steel or concrete structures used for the exploration and extraction of oil and gas from the earth’s crust. Offshore structures are designed for installation in the open sea, lakes, gulfs, etc., many kilometers from shorelines. These structures may be made of steel, reinforced concrete or a combination of both. The offshore oil and gas platforms are generally made of various grades of steel, from mild steel to high-strength steel, although some of the older structures were made of reinforced concrete.
Within the category of steel platforms, there are various types of structures, depending on their use and primarily on the water depth in which they will work.
Offshore platforms are very heavy and are among the tallest manmade structures on the earth. The oil and gas are separated at the platform and transported through pipelines or by tankers to shore.
read also Offshore Drilling Rigs
Design of offshore fixed platforms
The most commonly used offshore platforms in the Gulf of Mexico, Nigeria, California shorelines and the Persian Gulf are template type platforms made of steel, and used for oil/gas exploration and production (Sadeghi 1989, 2001).
The design and analyses of these offshore structures must be made in accordance with recommendations published by the American Petroleum Institute (API).
The design and analysis of offshore platforms must be done taking into consideration many factors, including the following important parameters:
• Environmental (initial transportation, and in-place 100-year storm conditions)
• Soil characteristics
• Code requirements (e.g. American Institute of Steel Construction “AISC” codes)
• Intensity level of consequences of failure.
The entire design, installation, and operation must be approved by the client.
Environmental parameters
The design and analysis of fixed offshore platforms may be conducted in accordance with the API’s “Recommended Practice for Planning, Designing, and Constructing Fixed Offshore Platforms – Working Stress Design (API-RP-2AWSD)”.
The latest revision of API-RP-2A-WSD is the 21st edition dated December 2000. The API specifies minimum design criteria for a 100-year design storm.
Helicopter landing pads/decks on offshore platforms must conform to API RP-2L (latest edition being the 4th edition, dated May 1996).
Normally, for the analysis of offshore platforms, the environmental parameters include wave heights of as much as 21 meters (depending on the water depth) and wind velocities of 170 km/hr for Gulf of Mexico, coupled with tides of up to 4 m in shallow waters. The wave heights up to 12.2 meters and wind velocities up to 130 km/hr for the Persian Gulf, coupled with tides up to 3 m are considered in design of platforms (Sadeghi 2001).
The design wave height in the Southern Caspian Sea is about 19 m for a return period of 100 years, and for the North Sea is over 32 m depending on the location.
The API RP-2A also specifies that the lowest deck must maintain a minimum of 1.5 m air gap between the bottom of the deck beams and the wave crest during the maximum expected level of water considering the combination of wave height and tides.
The platform should resist the loads generated by the environmental conditions and loadout, transportation and installation loads plus other loads generated by onboard equipment.
A typical offshore structure supported by piles normally has a deck structure containing a Main Deck, a Cellar Deck, Sub-Cellar Deck and a Helideck. The deck structure is supported by deck legs connected to the top of the piles. The piles extend from above the Mean Low Water through the mudline and into the soil.
Underwater, the piles are contained inside the legs of a “jacket” structure which serves as bracing for the piles against lateral loads. The jacket may also serve as a template for the initial driving of the through leg piles (The piles may be driven through the inside of the legs of the jacket structure). In the case of using skirt piles.
the piles may be driven from outside of the legs of the jacket structure. The structural model file consists of:
• The type of analysis, the mudline elevation and water depth.
• Member sizes
• Joints definition.
• Soil data (i.e. mudmat bearing capacity, pile groups, T-Z, P-Y, Q-Z curve points).
• Plate groups.
• Joint coordinates.
• Marine growth input.
• Inertia and mass coefficients (CD and CM) input.
• Distributed load surface areas.
• Wind areas.
• Anode weights and locations.
• Appurtenances weights and locations
• Conductors and piles weight and location
• Grouting weight and locations
• Load cases include dead, live and environmental loading, crane loads, etc.
Any analysis of offshore platforms must also include the equipment weights and a maximum deck live loading (distributed area loading), dead loads in addition to the environmental loads mentioned above, and wind loads. Underwater, the analysis must also include marine growth as a natural means of enlargement of underwater
projected areas subject to wave and current forces.
The structural analysis will be a static linear analysis of the structure above the mudline combined with a static non-linear analysis of the soil with the piles.
Additionally, checks will be made for all tubular joint connections to analyze the strength of tubular joints against punching. The punching shear analysis is colloquially referred to as “joint can analysis”. The Unity Checks must not exceed 1.0.
All structural members will be chosen based on the results of the computer-aided in-place and the other above-mentioned analyses. The offshore platform designs normally use pipe or wide flange beams for all primary structural members.
Concurrently with the structural analysis the design team will start the development of construction drawings, which will incorporate all the dimensions and sizes optimized by the analyses and will also add construction details for the field erection, transportation, and installation of the structure.
The platforms must be capable of withstanding the most severe design loads and also of surviving a design lifetime of fatigue loading. The fatigue analysis is developed with input from a wave scatter diagram and from the natural dynamic response of the platform, and the stiffness of the pile caps at the mudline by applying Palmgeren-Miner formula (Sadeghi 2001). A detailed fatigue analysis should be performed to assess cumulative fatigue damage. The analysis required is a “spectral fatigue analysis” or simplified fatigue analysis according to API.
API allows a simplified fatigue analysis if the platform (API 1996):
• Is in less than 122 m (400 ft) water depth.
• Is constructed of ductile steel.
• Has redundant framing.
• Has natural periods less than 3 seconds.
References:
1. Offshore Platform Design.
2. Installation of Petroleum Offshore Platform.